大脑的血管为人脑提供所需的营养和氧气。作为大脑血液供应的脆弱部分,小血管的病理可能会引起严重的问题,例如脑小血管疾病(CSVD)。还显示CSVD与神经变性有关,例如阿尔茨海默氏病。随着7个特斯拉MRI系统的发展,可以实现较高的空间图像分辨率,从而使大脑中非常小的血管描绘。非深度学习的方法进行血管分割的方法,例如,弗兰吉的血管增强,随后的阈值能够将培养基分割至大容器,但通常无法分割小血管。这些方法对小容器的敏感性可以通过广泛的参数调整或手动校正来提高,尽管使它们耗时,费力,并且对于较大的数据集而言是不可行的。本文提出了一个深度学习架构,以自动在7特斯拉3D飞行时间(TOF)磁共振血管造影(MRA)数据中自动分割小血管。该算法对仅11个受试者的小型半自动分段数据进行训练和评估;使用六个进行培训,两个进行验证,三个进行测试。基于U-NET多尺度监督的深度学习模型使用训练子集进行了训练,并以一种自我监督的方式使用变形 - 意识到的学习以改善概括性能。针对测试集对拟议的技术进行了定量和定性评估,并获得了80.44 $ \ pm $ 0.83的骰子得分。此外,将所提出的方法的结果与选定的手动分割区域(62.07结果骰子)进行了比较,并通过变形感知的学习显示出显着改善(18.98 \%)。
translated by 谷歌翻译
我们开发了一种新型的可区分预测控制(DPC),并根据控制屏障功能确保安全性和鲁棒性保证。DPC是一种基于学习的方法,用于获得近似解决方案,以解决明确的模型预测控制(MPC)问题。在DPC中,通过自动分化MPC问题获得的直接策略梯度,通过直接策略梯度进行了脱机优化的预测控制策略。所提出的方法利用了一种新形式的采样数据屏障功能,以在DPC设置中执行离线和在线安全要求,同时仅中断安全集合边界附近的基于神经网络的控制器。在模拟中证明了拟议方法的有效性。
translated by 谷歌翻译
深度强化学习(DRL)赋予了各种人工智能领域,包括模式识别,机器人技术,推荐系统和游戏。同样,图神经网络(GNN)也证明了它们在图形结构数据的监督学习方面的出色表现。最近,GNN与DRL用于图形结构环境的融合引起了很多关注。本文对这些混合动力作品进行了全面评论。这些作品可以分为两类:(1)算法增强,其中DRL和GNN相互补充以获得更好的实用性; (2)特定于应用程序的增强,其中DRL和GNN相互支持。这种融合有效地解决了工程和生命科学方面的各种复杂问题。基于审查,我们进一步分析了融合这两个领域的适用性和好处,尤其是在提高通用性和降低计算复杂性方面。最后,集成DRL和GNN的关键挑战以及潜在的未来研究方向被突出显示,这将引起更广泛的机器学习社区的关注。
translated by 谷歌翻译
新颖性检测旨在自动识别分销(OOD)数据,而无需任何先验知识。它是数据监视,行为分析和其他应用程序中的关键步骤,帮助在现场中保持不断学习。常规的OOD检测方法对数据或特征的集合进行多变化分析,通常诉诸于数据的监督,以提高准确性。实际上,这种监督是不切实际的,因为人们不能预料到异常数据。在本文中,我们提出了一种小说,自我监督的方法,不依赖于任何预定义的OOD数据:(1)新方法评估梯度之间的分布和OOD数据之间的Mahalanobis距离。 (2)通过自我监督的二进制分类器辅助,以指导标签选择以生成梯度,并最大化Mahalanobis距离。在具有多个数据集的评估中,例如CiFar-10,CiFar-100,SVHN和TINIMAGENET,所提出的方法始终如一地优于接收器操作特征(AUROC)和区域下的区域内的最先进的监督和无监督的方法在精密召回曲线(AUPR)度量下。我们进一步证明,该探测器能够在持续学习中准确地学习一个OOD类。
translated by 谷歌翻译
Deep Markov Models(DMM)是Markov模型的可扩展和表达概括的生成模型,用于表示,学习和推理问题。但是,这些模型的基本随机稳定性保证尚未得到彻底调查。在本文中,我们提供了在动态系统的背景下定义的DMM随机稳定性的充分条件,并提出了一种基于深神经网络建模的概率地图收缩的稳定性分析方法。我们在具有高斯分布的DMMS的稳定性和整体动态行为的稳定性和整体动态行为之间建立了与高斯分布的稳定性和总体动态行为之间的连接。基于该理论,我们提出了一些具有保证稳定性的受约束DMM的实用方法。我们通过使用所提出的稳定性约束,通过直观的数值实验凭证证实我们的理论结果。
translated by 谷歌翻译